

Disclaimers

I am not Katie Antypas (NSF Office Director, Office of Advanced Cyberinfrastructure)

• I do not represent NSF's views; did steal a few slides from her (with permission)

I am not Dan Stanione (TACC Director)

- [though we are sometimes confused... mostly because of the hair]
- I did steal some slides from Dan (with permission)

The situation in the United States is... "fluid"

What I say may be changing as I talk...

Opinions expressed are my own and not those of the University of Illinois, NSF, or US Federal Government

Did I mention that things are fluid?

US Federal Government has:

- issued many Executive Orders and related missives
- induced federal agencies to cut grant funding and indirect cost rates aggressively
- cracked down on free speech at universities
- created lots of chaos

US academic institutions:

- being targeted by Federal Government
- have had funding cut or suspended
 - many individual grants have been eliminated or have had their budgets cut
- largely do not know how to act in current circumstances

NSF Approach

NSF is not a mission agency

attempts to support very broad range of scholarly effort

NSF struggling with current environment (as are most agencies)

- budget uncertainties
- rapid emergence of AI everywhere
- rapid evolution of computing technologies; quantum computing in particular
- science applications struggling to adapt quickly enough
 - thus ongoing need for more traditional resources

NSF Computing Effort

Various programs

- one major compute system
 - Leadership Class Computing Facility (LCCF); under construction
- ACCESS program and associated compute resources
- emerging quantum computing investments
- bunch of other stuff

Balancing these is a challenge

- budget uncertainties
- policy makers are only thinking about AI and quantum
- vendors have largely the same focus in mostly segregated groups

NSF Program Areas in HPC+

LCCF

- NSF's closest thing to a large-scale resource
- dwarfed by DoE resources
- [more in a moment]

ACCESS and associated resources

- successor to TeraGrid/XSEDE
- provides access to a variety of capacity systems with a shared allocations process
 - US\$5-20M acquisition costs + operations
 - https://access-ci.org/
- year long allocations, large allocations reviewed twice per year
- currently 17 hardware Resource Providers
 - CPUs, GPUs, and a mix of other things

Quantum is an effort from Mathematical and Physical Sciences directorate

National Quantum Virtual Laboratory <u>awards</u>

Other NSF Programs

National Research Platform

 distributed network of small (~8 node) GPU/CPU clusters with distributed data storage, across dozens of sites.

Cloud Testbed Program

- · Cloudlab, Chameleon
 - computing research/cloud research platforms

CloudBank

 shared Portal for access to commercial providers, with NSF-allocated credits.

NCAR

computing for climate/weather research

- The LCCF (Leadership Class Computing Facility) elevates computing at NSF for the first time to be on a par with other facilities.
 - While open to all open science users, other large facilities or a core audience!
 - Construction phase began in July.
- ▶ The first system, Horizon, will become available in early 2026
 - ▶ Datacenter completion in October 2025, rack delivery will begin then.
- The project includes, buildings, systems, and importantly, *people* to support them., including software optimization and tuning.

DISTRIBUTED CENTERS

The LCCF Hardware (and staffing) will not only be at TACC, but also at four other sites around the country. (Through construction and operations).

► NCSA -- PSC -

Focus on applications using Focus on storage systems (and data rep site) accelerators and Quantum

► SDSC -- AUCC -- High throughput, and HT Inference Accessibility, Workforce, interactive systems for large scale scientific Instruments

A LITTLE MORE ON HORIZON

- Primary compute capability will be :
 - ~400 PF double precision (10x Frontera)
 - ▶ >10 ExaFlops bfloat 16 precision.
- Solid-state storage capacity:
 - ~0.5 Exabytes. == 25x bandwidth of Frontera (8TB/s Write; 16TB/s Read)
- Roughly a million cores of CPU, roughly 4k GPUs.
 - NVIDIA Grace-Blackwell 2,000 nodes, 800Gbps Infiniband
 - ▶ NVIDIA Vera CPU, 4,750 nodes, 400Gbps Infiniband
- Some interesting opportunities in data at this scale the storage controllers alone will have >75k
 additional cores directly attached to the flash drives we could do analytics on.
- Additional nodes for:
 - Interactive computing (e.g. Jupyter)
 - Persistent services (Inference services, Gateways, API instances, "serverless" functions, etc.).

What is ACCESS?

NSF program to

- help researchers and educators utilize advanced computing systems and services
- support science applications that requires more than a desktop or laptop
 - many domains
 - most now incorporating AI in some way

ACCESS: Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support

- US\$52 million award for five years to five lead institutions and their sub-awardees to facilitate the ACCESS program
- does NOT include funding for hardware resources and direct support of them

https://access-ci.org/about/organization/

ACCESS Resources

Resource list at:

https://allocations.access-ci.org/resources

Major resources:

- Expanse at SDSC
- Bridges2 at PSC
- Delta/DeltaAl at NCSA
- Stampede3 at TACC
- JetStream2 at IU/TACC
- Anvil at Purdue

DeltaAl

DeltaAI is a new resource that targets the computational needs of Artificial Intelligence/Machine Learning (AI/ML) workloads.

Learn more about DeltaAl »

Derecho

NSF National Center for Atmospheric Research GPU Compute CPU Compute

Installed in 2023, Derecho is NSF NCAR's latest supercomputer. The HPE Cray EX cluster is a 19.87-petaflops system. University researchers and NSF NCAR scientists can use Derecho to pursue work in Earth systems science and related sciences.

Learn more about Derecho»

Expanse

Expanse is a dedicated ACCESS cluster designed by Dell and SDSC delivering 5.16 peak petaflops, and will offer Composable Systems and Cloud Bursting.

Learn more about Expanse »

FASTER

 Texas A&M University
 ⑤ GPU Compute
 ⑤ ACCESS OnDemand
 ⑥ Innovative / Novel Compute

 ⑥ CPU Compute
 ⑥ Composable hardware fabric
 ⑤ Large Memory Nodes
 ⑤ Globus Data Transfer

Fostering Accelerated Scientific Transformations, Education, and Research (FASTER) is a NSF-MRI-funded cluster (award number 2019129) that offers state of the art CPUs, GPUs, and NVMe (Non-Volatile MemoryExpress) based storage in a composable environment.

Learn more about FASTER »

NAIRR Vision: A national research infrastructure to drive US Al innovation, discovery and national competitiveness

National goals

- Accelerate AI and AI-powered discovery and innovation.
- Expand the US AI R&D workforce and train the next generation of AI researchers and educators.
- Increase integration and use of worldclass public and commercial AI resources.
- Advance public trust in Al

Envisioned NAIRR Architecture

