International Post-Exascale workshop series

Software production

Second subgroup session

InPEx 2025 workshop – April 15-17, Japan

Our goal today: identify technical challenges & path towards solutions

Some challenges (The What):

Can we standardize HPC DevOps (HPCOps) methodologies and practices to enhance productivity and enforce into and portability?

What

TKeFrame, Jube, Testpilot,

- How to tackle different responsibility models in various computing center?
- How to support CI for the environment of each supercomputer?
- How can we empower users with synergetic co-deployment of a interfaces can we define to ensure portability and

A path towards solutions (The How):

- There are already man
 - packs
- And now, today: how to build, organize, rationalize a worldwide community to tackle these challenges
- The v лок great, for CI, application packaging
 - ...entify what prevents every site from providing a virtual-\$site?
- Containers could be the one interface with the the various sites
 - Sites could provide base images with pre-built applications & libraries if they want
 - There would have to be variants for each HW variation, wow to choose which one to use? => we need to identify the variations required and to normalize system description to support automated choice
 - The question of the interface with system libraries is not easy either (MPI, GPU, etc.), similar questions arise

InPEx 2024 workshop – April 14-17, Japan

Planning of the session - Organizational challenges

- "Software production in NumPEx" (Julien Bigot)
- "Software production in ECP" (Todd Gamblin)
- "Software production for Fugaku" (Kento Sato)
- "High Energy Physics, and its features (or problems)" (Tommaso Boccali)
- "the High Performance Software Foundation" (Todd Gamblin)
- Open discussion
 - Synergetic user/administrator software build & deployment for HPC
 - Package managers for HPC
 - Containerization & virtualization at exascale
 - Software binary repositories and caches
 - CI/CD/CB at exascale
 - Everything-as-code for HPC
 - Cloudification of the supercomputers
 - Al: new software stacks and practices
 - Shared metadata catalogs of HPC software
 - Methodologies and tools for reproducibility in HPC
 - HPC software sustainability: funding, communities, foundations, ...

https://tinyurl.com/inpex-swprod

Previous session

Software production in NumPEx – Julien Bigot

- NumPEx is structured in 5 projects
- Projects 1 to 3 produce reusable technical tools & libraries
- Project 5, Exa-DI is responsible for implementing the interface with applications, by
 - field testing solutions, identifying needs
 - productizing solutions, working on packaging, deployment, CI, etc.
- The strategy for these latest aspect is
 - To empower users beyond modules, with spack & guix
 - To curate a list of software and provide software integration guidelines
 - Identify a list of factual badges self-assessed by developers

AI STACK

Base Libraries

Library	Guix	Spack	Latest
python	3.10.7	3.13.2	3.14.0_slphs7, 3.14.0-s7, 3.14.0s7, 3.13.3
cmake	3.30.3	3.31.6	4.0.1
pkg-config	0.29.2	0.29.2	9.29.2
bazel	8	7.0.2	8.1.1
gcc	14.2.0	14.2.0	24.2.0
gfortran	13.3.0		14.2.0
cuda	8	12.8.0	12.8.1_572.61, 12.8.1
nvhpc	8	25.2	25.7
python:setuptools	07.0.1	76.0.0	78.1.0
python:pytest	8.3.3	8.2.1	8.3.5

NumPEx Stack

Software production in ECP - Todd Gamblin

- Big focus: make sure that applications were ready for the HW platforms
- For the 1st time maybe, app developers were convinced they had to use abstraction layers & shared dependencies

- Some libs and tools ended up being really used, Kokkos, spack, etc.
- Hierarchy of integration: product, SDKs, E4S
 - SDKs were here to ensure that libraries would actually work together and not assume they were alone
 - Small groups are required to achieve actual work, grouping by theme might not be the only and best solution all the time, but it had the merit to exist
- A database of all products, scraped out of the project webpage
- There was an attempt to establish community policies
- There was a try to do commercial support for E4S, this doesn't seem really widespread in the end. It was a request by facilities, but they didn't really use it in the end.

Software production for Fugaku - Kento Sato

- FugakuNEXT will be CPU + GPU => More specific developments required
 - A list of required software is identified

- On Fugaku, a majority of system software is proprietary software that must be continuously maintained by the vendor.
 - Open-source software can be maintained by different vendors or sub-contractors.
- On FugakuNEXT, Riken-RCCS is the main developer, but there is a document specifying some requirements regarding the result.
- OSS is a strong target for the next generation.
- For the programming environment, compiler usage is tracked on Fugaku. C/C++ was raising vs. Fortran, but it's not a sustained trend. Fortran support will be critical.
 - This is an application co-designed project "application first"
 - So applications have a strong say in the choices made => requesting a programming language change is not realistic
 - There will have to be a porting assistance.

High Energy Physics, and its features (or problems) – Tommaso Boccali

- Software development @ CERN
- 4 collaborations 5-10MLOCs, ~600 dependencies, complex CI/CD, deployment through CVMFS
 - Many ways to populate the CVMFS
- Some Cuda, experiments with ROCm, oneAPI
- Experiments last ~50years, in such a time-span, everything changes
- How to select abstraction layers that one can rely on for this kind of duration? With support the HPC centers...
 And a critical user mass.
- Is there interest to work together with the HPC community?

	CUDA	HIP	OpenMP Offload	Kokkos	dpc++ / SYCL	alpaka	std::par
NVidia GPU					codeplay and intel/livm		nvc++
AMD GPU				feature complete for select GPUs	via openSYCL and intel/IIvm	hip 4.0.1 / clang	
Intel GPU		CHIP-SPV early prototype		native and via OpenMP target offload		prototype	oneAPI::dpl
multicore CPU							g++ & tbb
FPGA						via SYCL	

The High Performance Software Foundation – Todd Gamblin

- A neutral hub for open source, HPC software
- Supports projects by
 - Increasing adoption
 - Aiding community growth
 - Enabling development efforts
- Lowering barriers to productive use of today's & future HPC systems
- Name IP is transferred to the Linux Foundation (the code remains the contributors' with OSS licence)
 - Ensuring sustainability of software & prevent a specific contributor from closing it at any point
- Accept many projects, doesn't try to pick "winners", better to collaborate
- Funded by members
 - This isn't enough money to pay for developers,
 - but help collaborative efforts, meetings, logos, websites, CI, etc.
- HPSF is organizing the first HPSF conference
- Software stages in HPSF enable to identify the level of reliability, sustainability of projects

hpsf.io

Emerging

Some challenges (The What):

- How can we improve software sustainability
 - Can we identify critical software pieces in the stack and share the maintenance burden?
 - How to help with software adoption & reuse, vs. redesign from scratch?
- How can we shield these software bits from funding & political instabilities?
- We organize in different way around the world to produce software, how can we combine and collaborate?
- There are many forums that for collaboration around HPC software production & distribution
 - each with their specificities, participants, ... => where is the right place to get everyone involved?
 - each with their specific organization => what is their resilience, who do they depend on?

Some challenges (The What):

- How can we improve software sustainability
 - Can we identify critical software pieces in the stack and share the maintenance burden?
 - How to help with software adoption & reuse, vs. redesign from scratch?
- How can we shield these software bits from funding & political instabilities?
- We organize in different way around the world to produce software, how can we combine and collaborate?
- There are many forums that for collaboration around HPC software production & distribution
 - each with their specificities, participants, ... => where is the right place to get everyone involved?
 - each with their specific organization => what is their resilience, who do they depend on?

A path towards solutions (The How):

- Cartography the multiple collaboration forums
 - their participants
 - their organizational dependencies and failure points
 - their specificities

Some challenges (The What):

- How can we improve software sustainability
 - Can we identify critical software pieces in the stack and share the maintenance burden?
 - How to help with software adoption & reuse, vs. redesign from scratch?
- How can we shield these software bits from funding & political instabilities?
- We organize in different way around the world to produce software, how can we combine and collaborate?
- There are many forums that for collaboration around HPC software production & distribution
 - each with their specificities, participants, ... => where is the right place to get everyone involved?
 - each with their specific organization => what is their resilience, who do they depend on?

A path towards solutions (The How):

- HPSF has interesting features
 - A neutral hub place for HPC software development with an independent Legal existence
 - A lifecycle with well identified & peer reviewed stages to help identify software maturity
 - We will work on evaluation and drafting recommendations for HPSF

Some challenges (The What):

- How can we improve software sustainability
 - Can we identify critical software pieces in the stack and share the maintenance burden?
 - How to help with software adoption & reuse, vs. redesign from scratch?
- How can we shield these software bits from funding & political instabilities?
- We organize in different way around the world to produce software, how can we combine and collaborate?
- There are many forums that for collaboration around HPC software production & distribution
 - each with their specificities, participants, ... => where is the right place to get everyone involved?
 - each with their specific organization => what is their resilience, who do they depend on?

A path towards solutions (The How):

- Cartography the multiple collaboration forums
 - their participants
 - their organizational dependencies and failure points
 - their specificities
- HPSF has interesting features
 - A neutral hub place for HPC software development with an independent Legal existence
 - A lifecycle with well identified & peer reviewed stages to help identify software maturity
 - We will work on evaluation and drafting recommendations for HPSF

Concrete outputs & actions planned

- Produce a white paper to formalize the various responsibility models over the world
 - Identify the roles involved, clarify how each model map these roles to actual people, design benchmark use-cases for the various software deployment solutions on each model
- Continue the work initiated to develop an interoperable installed software database format
- Work to standardize containers as the one interface with computing centers
 - Work with computing sites could to provide base images with pre-built applications & libraries
 - Identify a set of required variants and push for a standard site description format
- Generalize the virtual Fugaku approach all over the world
 - Work with Riken to extract a virtual-\$site framework
 - Work with computing centers over the world to identify requirements for implementation
 - Push for a worldwide deployment
- Cartography the multiple collaboration forums
 - their participants, their organizational dependencies and failure points, their specificities
 - => Maybe organize a BoF @ SC or ISC to gather this community of communities?
- Evaluate and draft recommendations for HPSF from the point of view of all InPex participating institutions

Work will happen on InPEx slack #wg-software-production