InPEx 2025 Japan: GenAl Breakout

GenAI: Platforms

Key Insights: Future AI/HPC Architectures

- **Divergence vs. Integration?**: HPC remains unique due to precision and storage. Al brings low-precision inference and training demands—opportunities arise at the intersection.
- Opportunities for Innovation: Most innovation expected on the software stack, while hardware is vendor-driven. Emulated FP64, edge computing, and chiplet ecosystems were highlighted.
- **Portability & Sharing**: Emphasis on portability across platforms especially for hybrid HPC+AI environments.
- Operational Shifts: Agents and inference are shaping new operational paradigms— we should address this with a working group
- Global Coordination: Strong sentiment: balance industrial AI trends and scientific HPC needs.

GenAl: Code

An algorithm for depositing from particle to mesh - decomposition, prompts and test-driven development, debugging – everything happening in (what should be) very precise English

Key Insights: Code Generation, Precision, Debugging

- AI Helps: LLMs assist well with simple tasks and boilerplate code; fail more often on complex, hybrid, or algorithmic logic.
- Prompting ≠ Programming: Prompt engineering seen as inadequate pedagogy. Better for experienced developers, not a replacement for formal programming education.
- **Trust & Validation**: Consensus on the need for (more) robust test harnesses (unit tests, integration) and human-in-the-loop practices for validation.
- **Scientific Intuition**: (current) AI lacks intuition; safe precision reduction must remain scientist-guided, though AI can support validation and testing.
- Path Forward: (FAST!) International repositories (e.g., prompt libraries, agent systems) and shared fine-tuned models for HPC contexts.

GenAl: Data

The Multimodal Universe Collaboration, 2024

100M synthetic datasets

Hollman et al, 2024

The Well: 15TB of Physics Simulations

Ohana et al, 2024

Key Insights: Data Curation & Generation

- **Data Complexity Problem**: Each community has unique formats. There is a great need for AI to help make scientific data available for training.
- Local Storage: (a key difference in AI/HPC platforms): Supercomputing centers could support in-situ AI processing before discarding intermediate data.
- Workflow Innovation: Need for shared pipelines to load, preprocess, and stream data—especially for large GenAI models.
- Access: Social and political barriers limit data access.. This is difficult. We must continue to improve availability. Some fields (e.g., structural biology) are ahead; others lag behind.
- Future: Clear plan for improving, not just talking about, scientific data for AI

GenAl: Truth

AI FOR SCIENCE: 5 LESSONS FROM MY PHD

#1: AI usage doesn't imply AI usefulness

#2: AI will benefit some areas of science but not others

#3: Evaluating whether AI is accelerating science is extremely difficult

#4: Conflicts of interest and researcher degrees of freedom make AI-for-science overoptimistic

#5: AI-for-science is often a solution looking for a problem

Nick McGreivy

Department of Astrophysics Program in Plasma Physics Princeton University

April 11th, 2025 Algorithmic Innovation & Entrepreneurship

Analysis | Published: 25 September 2024

Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations

Nature Machine Intelligence 6, 1256–1269 (2024) Cite this article

Key Insights: GenAl for Science

(Is AI Improving Scientific Progress?)

- **Impact Metrics**: Track time to discovery, scientific output, human effort saved, community uptake, and cross-disciplinary impact. Use both quantitative (e.g., citations, speedups) and qualitative (e.g., novelty, utility) measures.
- Practical Benefits: GenAl is best at supporting tedious, complex, or repetitive tasks like literature review, hypothesis generation, debugging, and code maintenance – freeing up human creativity.
- ModSim vs AI: GenAI can enable science in data-rich domains (e.g., astrophysics, protein folding) and assist where first-principle models fall short.
- **Best Practices**: Avoid biases (e.g., cherry-picking, weak baselines) via provenance tracking, peer review, and international frameworks.
- Global Collaboration: 1000 Scientist Jam repeated in many places. Build *REAL* experience. Foster trust through transparency and reproducibility.

Thank You