INPEx 2025 Japan: GenAl Breakout




GenAl: Platforms
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Key Insights: Future AI/HPC Architectures

* Divergence vs. Integration?: HPC remains unique due to precision
and storage. Al brings low-precision inference and training demands—
opportunities arise at the intersection.

* Opportunities for Innovation: Most innovation expected on the
software stack, while hardware is vendor-driven. Emulated FP64, edge
computing, and chiplet ecosystems were highlighted.

* Portability & Sharing: Emphasis on portability across platforms —
especially for hybrid HPC+Al environments.

* Operational Shifts: Agents and inference are shaping new operational
paradigms-— we should address this with a working group

* Global Coordination: Strong sentiment: balance industrial Al trends
and scientific HPC needs.



GenAl: Code
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Key Insights:
Code Generation, Precision, Debugging

* Al Helps: LLMs assist well with simple tasks and boilerplate code; fail
more often on complex, hybrid, or algorithmic logic.

* Prompting # Programming: Prompt engineering seen as inadequate
pedagogy. Better for experienced developers, not a replacement for
formal programming education.

* Trust & Validation: Consensus on the need for (morez robust test
harnesses (unit tests, integration) and human-in-the-loop practices for

validation.

* Scientific Intuition: (current) Al lacks intuition; safe precision
reduction must remain scientist-guided, though Al can support
validation and testing.

* Path Forward: (FAST!) International repositories (e % , prompt libraries,
agent systems) and shared fine-tuned models for HPC contexts.



GenAl: Data
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Key Insights: Data Curation & Generation

 Data Complexity Problem: Each community has unique formats.
There is a great need for Al to help make scientific data available for

training.
* Local Storage: (a key difference in AI/HPC platforms): Supercomputing

centers could support in-situ Al processing before discarding
iIntermediate data.

* Workflow Innovation: Need for shared pipelines to load, preprocess,
and stream data—especially for large GenAl models.

* Access: Social and political barriers limit data access.. This is difficult.
We must continue to improve availability. Some fields (e.g., structural
biology) are ahead; others lag behind.

* Future: Clear plan for improving, not just talking about, scientific data
for Al



GenAl: Truth

AI FOR SCIENCE: 5 LESSONS FROM MY PHD

#1: Al usage doesn’t imply Al usefulness
#2: Al will benefit some areas of science but not others
#3: Evaluating whether Al is accelerating science is extremely difficult

#4: Conflicts of interest and researcher degrees of freedom make Al-for-
science overoptimistic

#5: Al-for-science is often a solution looking for a problem

Nick McGreivy
Department of Astrophysics
Program in Plasma Physics

Princeton University

April 11th, 2025
Algorithmic Innovation & Entrepreneurship

Analysis | Published: 25 September 2024

Weak baselines and reporting biases lead to
overoptimism in machine learning for fluid-related
partial differential equations

Nick McGreivy &2 & Ammar Hakim

Nature Machine Intelligence 6, 1256-1269 (2024) | Cite this article




Key Insights: GenAl for Science

(Is Al Improving Scientific Progress?)

Impact Metrics: Track time to discove(?_/, scientific output, human effort
saved, community uptake, and cross- ISC(J/{ol/na(y iImpact. Use both
quantitative (e.g., citations, speedups) and qualitative (e.g., novelty, utility)
measures.

Practical Benefits: GenAl is best at supporting tedious, complex, or
repetitive tasks like literature review, hypothesis generation, debugging, and
code maintenance - freeing up human creativity.

ModSim vs Al: GenAl can enable science in data-rich domains (e.g.,
aﬁtrophysics, protein folding) and assist where first-principle models fall
short.

Best Practices: Avoid biases (e.g., cherry-picking, weak baselines) via
provenance tracking, peer review, and international frameworks.

Global Collaboration: 1000 Scientist Jam - repeated in many places. Build
*REAL* experience. Foster trust through transparency and reproducibility.
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